
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 51:635–657
Published online 20 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1144

A priori tests on numerical errors in large eddy simulation
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SUMMARY

When low-order �nite-di�erence methods are applied in large eddy simulation (LES), the magnitude of
the numerical error may be larger than that of the subgrid-scale (SGS) term. In this paper, the e�ect
of explicit �ltering on the numerical error related to the spatial discretization of the convection term
and the exact SGS term is studied a priori in the turbulent fully developed channel �ow. As the �lter
width is increased the grid resolution is kept constant. Also �ltering in the inhomogeneous wall-normal
direction is discussed. The main conclusions are related to two approaches to explicit �ltering. In the
traditional approach, the whole velocity �eld is �ltered explicitly while in the alternative approach, only
the non-linear convection term of the Navier–Stokes equations is �ltered explicitly. Based on the results
presented in the paper it seems that the �rst approach leads to an unphysical situation. However, the
later approach works in the desired way, and the numerical error becomes clearly smaller than the SGS
term. The main di�erence between the two approaches seems to be the interpretation of the resolved
non-linear term in the �ltered Navier–Stokes equations. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The starting point in direct numerical simulation of turbulence (DNS) are the Navier–Stokes
equations. Although analytical solutions of these equations are known only for some laminar
cases, at the moment it is widely believed that the Navier–Stokes equations describe also
turbulent �ows. In DNS, all the turbulent motion is solved numerically from the Navier–Stokes
equations and no models are applied. This approach requires a huge amount of computer
capacity, and thus, it is mainly a research tool [1].
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In large eddy simulation (LES), the Navier–Stokes equations are �ltered using a low-pass
�lter. The scales of motion are divided into two parts: the resolved and sub-�lter-scale motions.
Only the resolved scales are simulated accurately and the e�ect of the sub-�lter scales on the
larger scales is modelled. Usually, in �nite-di�erence calculations, the grid itself is interpreted
as an implicit �lter and no explicit �ltering is applied. Thus, the two scales are named as
resolved and subgrid scales (SGS).
When one performs simulations in complex geometries, spectral discretization methods are

not a suitable choice, and �nite-di�erence-type or �nite-element schemes are applied. However,
with commonly applied low-order �nite-di�erence schemes numerical error, mainly truncation
error, becomes a problem. This error may dominate the SGS term and even using an advanced
SGS model will not improve the situation [2].
When �nite-di�erence-type methods are applied, the truncation error has the strongest e�ect

on the smallest resolved scales, which are badly described by the grid. If the grid resolution
is increased, the numerical error related to the resolved scales of the coarser grid diminishes,
but at the same time there will be new small scales present, and these scales are again
contaminated by numerical error. In addition, the e�ect of the SGS model will diminish with
increased resolution. Thus, even after grid re�nement, the dominance of the SGS term over
the numerical error is not necessarily clear. Applying high-order methods would improve the
situation, but as the truncation error is reduced aliasing error may become a problem [3].
The dominance of the numerical error over the SGS term has been studied a priori using

DNS data by several groups [2, 4–6], and explicit �ltering has been suggested as a cure for
the problem. As the small scales are removed and considered as SGS, the magnitude of the
numerical error related to the resolved scales reduces. At the same time, the responsibility
for these scales should be shifted to the SGS model, and thus, the e�ect of the model should
increase. Some of the studies have been performed applying �nite-di�erence schemes [4, 5],
and in some studies the spectral methods with modi�ed wave numbers have been applied [6].
For the second-order central-di�erence scheme, an explicit �lter with the width of four grid
spacings has been recommended [6].
Also actual LES applying explicit �ltering have been presented [7–9]. In the simulations,

there have been two approaches to explicit �ltering. The traditional choice is to �lter the
whole velocity �eld as done in Reference [7]. The other option is to �lter only the non-linear
convection term of the Navier–Stokes equations as suggested in Reference [10]. This approach
has been applied in actual LES in References [8, 9].
In the simulations applying explicit �ltering, the bene�t is unclear if one considers the

increased computing e�ort [7]. However, when compared to traditional approaches improved
results have been obtained [8]. When explicit �ltering is applied, the roles of the SGS model
and the numerical error are clear and if the behaviour of the SGS model is considered, good
or bad results can be explained with increased certainty.
In this paper, both mentioned approaches to explicit �ltering are studied a priori. The fully

developed turbulent channel �ow between two parallel walls is applied as a test case, and
we concentrate on the second-order �nite-di�erence scheme that is widely used in practical
simulations. The aim is to gain more information on how explicit �ltering could be used in
actual LES where the grid resolution is limited by computer capacity. Here, the grid resolution
is not increased with increasing �lter width, and thus, increasing the �lter width leads to lower
nominal resolution. In this paper, we only consider the magnitudes of the exact SGS term
and the numerical error related to the �nite-di�erence approximation of convection term of

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:635–657



A PRIORI TESTS ON NUMERICAL ERRORS IN LES USING FD AND EXPLICIT FILTERING 637

the Navier–Stokes equations. Thus, modelling error or numerical error due to time integration
are not discussed.
Previously, in the a priori tests involving inhomogeneous directions, �ltering has been

performed only in homogeneous directions. In this paper, we discuss also a priori tests where
�ltering is applied in the wall-normal direction. The applied �lter is an approximation to the
spectral cut-o� �lter and the related commutation error is of fourth order [11].
In Section 2, the numerical schemes applied in the DNS simulations are discussed. In

Section 3, we discuss the chosen test cases, and in Section 4, the results of a priori tests
are presented and discussed. In Section 4, the results for the two mentioned approaches to
explicit �ltering are �rst studied using two-dimensional �ltering. The di�erence between the
approaches is discussed, and �nally the tests are repeated applying three-dimensional �lters.

2. NUMERICAL METHODS

The equations describing the �ow of an incompressible Newtonian �uid—i.e. the Navier–
Stokes equations may be written in the non-dimensional form as

@uj
@xj

= 0 (1)

@ui
@t
= − @p

@xi
+
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@xj

(
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@xj
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where ui(i=1; 2; 3) is the non-dimensional velocity component in the ith coordinate direction,
p is the non-dimensional pressure and Re� is the Reynolds number. Hereafter, ui refers to
velocity scaled by the friction velocity, u�, xi to coordinate scaled by the channel half-height,
�, t to time scaled by u�=� and p to pressure scaled by �u2� . The Reynolds number is here
de�ned as

Re�=
u��
�

(3)

In the channel �ow, there are two homogeneous directions: the streamwise and the spanwise.
Periodic boundary conditions were applied in these directions, and no-slip conditions were
forced on the top and bottom walls.
In the chosen coordinate system, x-axis points in the streamwise direction, y-axis in the

spanwise and z-axis in the wall-normal direction. Correspondingly, the streamwise velocity
component is referred to as u, the spanwise as v and the wall normal as w.
The spatial derivatives are evaluated applying the second-order central-di�erence scheme

on a staggered grid from Reference [12]. In the staggered grid system, pressure points are
located at the centre of a computational cell and the velocity points on the boundaries. The
streamwise velocity point is on the boundary normal to the streamwise component, etc. The
advantage of using the staggered grid is that we have a strong coupling between velocity
and pressure, and thus, oscillating pressure modes are avoided. In addition, the second-order
central-di�erence scheme conserves kinetic energy only on the staggered grid system [13].
For time integration, a low-storage, third-order, three-stage, explicit Runge–Kutta method

from Reference [14] was applied to the convection and di�usion terms of Equation (2). This
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Table I. The coe�cients of the applied Runge–Kutta
method on the three intermediate time steps.

1st step 2nd step 3rd step

c1 8=15 5=12 3=4
c2 0 −17=60 −5=12

method involves in all three intermediate time steps inside one physical time step, and one
intermediate step may be written as

u∗; n+1
i = uni +�t

n(cn1�u
n
i + c

n
2�u

n−1
i ) (4)

where the superindices refer to (intermediate) time levels, �t is the time step, c1 and c2 are
the coe�cients that vary on each intermediate time step (Table I) and �ui is the discrete form
of the convection and di�usion terms of Equations (2). u∗

i is the so-called predicted velocity
�eld that does not necessarily satisfy the continuity equation (Equation (1)). The �uctuating
pressure is solved on each intermediate time step from the Poisson equation

@2pn+1

@xixi
=
@u∗; n+1

i

@xi
(5)

where periodic boundary conditions are applied, and the predicted velocity �eld is corrected
by the �uctuating pressure gradient as

un+1i = u∗; n+1
i +

@pn+1

@xi
(6)

In the fully developed channel �ow, there is mean-pressure gradient only in the streamwise
direction, and this pressure gradient drives the �ow. When the equations are scaled by the
friction velocity, the non-dimensional mean-pressure gradient equals 2 (see Reference [15]),
and in the present simulations the mean-pressure gradient was �xed to this value and the mean
velocity was let to vary. The time-integration method allows the Courant number (CFL) of
1:7 [14], but here value 1 was applied. To keep the Courant number �xed, the physical time
step was allowed to vary.

3. TEST CASES AND DNS RESULTS

In this section, we discuss the DNS data from the fully developed channel �ow applied in the
a priori tests. The aim is to verify that the DNS is su�ciently well resolved for these tests.
The dimensions of the channel and the chosen grid resolution in DNS for the Re�=180 case
are given in Table II and for the Re�=395 case in Table III.
The mean-velocity pro�le and the root-mean squares (RMS) of the �uctuating velocity

components (uRMS =
√〈u′u′〉) scaled by the friction velocity from the simulation at Re�=180

are given in Figures 1 and 2, respectively, and the turbulent, viscous and total stresses
in Figure 3. The reference data are from the simulations of Moser et al. [16] (MKM).
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Table II. Dimensions of the channel and grid resolution in the DNS at Re�=180.

Streamwise Spanwise Wall-normal

Length=channel half-height 8:0 4:0 2:0
Length in wall units 1440 720 360
Number of grid points 120 150 100
Size of grid cells in wall units 12 5 6 (max) 0:4 (min)

Wall units: x+ =Re�x, where x is scaled by the channel half-height.

Table III. Dimensions of the channel and grid resolution in the DNS at Re�=395.

Streamwise Spanwise Wall-normal

Length=channel half-height 6:0 3:2 2:0
Length in wall units 2370 1264 790
Number of grid points 160 160 120
Size of grid cells in wall units 15 8 15 (max) 0:7 (min)
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Figure 1. Mean velocity pro�le. Re�=180.

One-dimensional streamwise and spanwise energy spectra are plotted in Figure 4. The stream-
wise one-dimensional spectrum is plotted in the middle of the channel and the spanwise in
the near-wall region. In addition, spectra from y+ ≈ 36 is included. They are required later
in this paper. We see that the spectra drop o� several orders of magnitude, and thus, the grid
resolution seems adequate.
In Figure 5, the mean-velocity pro�le is plotted from the Re�=395 case. The mean velocity

is underpredicted when compared to the reference data. The RMS-velocities are given in
Figure 6. Here, the streamwise Reynolds stress is underpredicted. The total, viscous and
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Figure 2. The RMS-velocity components. Re�=180.
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Figure 3. Turbulent, viscous and total stresses. Re�=180.

turbulent stresses are depicted in Figure 7. The streamwise one-dimensional energy spectrum
is plotted in Figure 8 in the middle of the channel, and the spanwise in the near-wall region
(z+ ≈ 5). The spectra drop o�, but in the spanwise direction the resolution could be further
improved. At this larger Reynolds number, the simulation is thus not as well resolved as at
the lower Reynolds number. However, the a priori tests were repeated using grids with both
lower and larger resolutions, and the conclusions of the tests were not sensitive to the grid
re�nement. The resolution of the DNS was thus considered adequate for these a priori tests.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:635–657



A PRIORI TESTS ON NUMERICAL ERRORS IN LES USING FD AND EXPLICIT FILTERING 641

 0.001

 0.01

 0.1

 1

 0.1  1  10  100

E
uu

kx

streamwise, y+=36
streamwise, y+=176
spanwise, y+=5
spanwise, y+=36

Figure 4. One-dimensional streamwise and spanwise energy spectra. Re�=180.
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Figure 5. Mean velocity pro�le. Re�=395.

4. A PRIORI TESTS OF LES

In this section, we discuss the a priori tests of the explicit �ltering. First, we discuss the tests
where two-dimensional �ltering was applied. In Section 4.1, the traditional approach, where the
whole velocity �eld is �ltered, is applied, and in Section 4.2, only the non-linear convection
term of the Navier–Stokes equations is �ltered explicitly. In Section 4.3, we discuss the
di�erences between the two approaches, and �nally in Section 4.4, three-dimensional �ltering
is discussed.
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Figure 6. The RMS-velocity components. Re�=395.
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Figure 7. Total, viscous and turbulent stresses. Re�=395.

4.1. Explicit �ltering of the whole velocity �eld

In the a priori tests we follow the approach suggested in Reference [4]. The �ltered Navier–
Stokes equations, that are being solved in LES in the incompressible case, are written as

@ũi
@t
+
@ũiũj
@xj

= − @p̃
@xi

+
@
@xj

(
1
Re�

(
@ũi
@xj

+
@ũj
@xi

))
− �i (7)

where tilde refers to the implicit grid �lter, overline to the explicit �lter and �i is the SGS
term that requires modelling. The relation between the exact non-linear term and its discrete
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Figure 8. One-dimensional streamwise and spanwise energy spectra. Re�=395.

counterpart may be written as
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where the product ũiũj can be evaluated from the resolved �ow �eld, �=�xj is the di�erence
approximation to the �rst derivative, �i is the SGS term that needs modelling. It corresponds
to the divergence of the SGS stress. �i represents the numerical error related to the spatial
discretization of the non-linear convection term. The viscous dissipation term is divided by
the Reynolds number and it is thus small in comparison to convection, and the numerical
error related to time integration is assumed to be small due to the small time step applied in
the explicit time-integration method. This choice to study only the numerical error related to
the convection term has also been made in previous a priori studies by other authors [4, 5].
The exact SGS term and the numerical error can be estimated from DNS data using Equa-

tion (8). One assumes that the DNS velocity �eld ui is a good approximation to the exact
solution. The DNS �eld is �ltered using a �lter with the width, �f , equal to the LES grid
spacing, �LES, to obtain the �eld ũi corresponding to the LES velocity �eld. In this study,
a fourth-order commutative �lter with the width of three grid spacings from Reference [11]
was applied as the grid �lter. If explicit �ltering is studied, ũi is �ltered again applying a
wider �lter to obtain the explicitly �ltered �eld ũi. In this study, the trapezoidal �lter was
applied as the explicit �lter. If the �lter width of the trapezoidal �lter is based on the stan-
dard deviation, it is slightly wider than the region over which the quantity being �ltered in
integrated [10]. However, if the width is based on the e�ective �lter cut-o� frequency as with
the commutative �lters [11], it is the same as the integration interval.
Both terms appearing in the de�nition of the SGS term, �i, and the �rst term in the de�nition

of the numerical error, �i, are evaluated on the DNS grid, and the fourth-order central-
di�erence scheme was applied. The fourth-order scheme was used to make the numerical
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Table IV. Dimensions of the channel and resolution of the studied LES grid in the
a priori tests at Re�=180.

Streamwise Spanwise Wall-normal

Length=channel half-height 8:0 4:0 2:0 2:0
Number of grid points 40 50 100 32
Resolution in wall units 36 14 6 (max) 14 (max)

Table V. Dimensions of the channel and resolution of the studied LES
grid in the a priori tests at Re�=395.

Streamwise Spanwise Wall-normal

Length=channel half-height 6:0 3:2 2:0
Number of grid points 53 53 120
Resolution in wall units 45 24 15 (max)

error related to these terms as small as possible. Since the DNS result was obtained using a
second-order scheme, the accuracy of the prediction of these terms is however not of fourth
order.
The second term in the de�nition of the numerical error �i is evaluated on the LES grid. The

grid �ltered velocity �eld ũi is restricted to the LES grid, it is �ltered explicitly on the LES
grid, products ũiũi are evaluated on the cell boundaries using a second-order interpolation and
�nally the second-order central-di�erence scheme is applied on this coarser grid. The points
of the LES grid match the DNS grid, and thus, no interpolation is applied when the �ltered
�eld is restricted to the DNS grid. Explicit �ltering is here performed on the LES grid because
this term represents the derivative evaluated in LES, and in actual LES the velocity �eld is
�ltered on the LES grid. This di�ers somewhat from the choice made by other authors [4, 5],
but this was considered more consistent. However, when the di�erent approaches were tested,
this had no e�ect on the conclusions.
The resolutions of the studied LES grids at the two Reynolds numbers are given in

Tables IV and V. The grid spacing of the studied LES grid in the streamwise and span-
wise direction, �LES, was three times the grid spacing of the corresponding DNS grid. Actual
channel �ow simulations applying similar resolutions have been performed by other authors
[5, 8, 17]. In the �rst set of the a priori tests, both �lters were applied only in the homoge-
neous directions, and the LES grid had the same resolution in the wall-normal direction as
the original DNS grid had. This approach has been applied in the previous a priori tests of
the channel �ow [5, 18].
Only the SGS term and the numerical error of the streamwise momentum equation were

studied. The spanwise and wall-normal momentum equations have been studied by other
authors, and the behaviour was similar to the streamwise equation [5].
In Figure 9, we see how the L2-norms of the numerical error, �x, and of the exact SGS

term, �x, behaved in the a priori tests at Re�=180. The L2-norms were �rst evaluated over
the homogeneous directions. To insure that the results are not due to statistical variation,
the norms were evaluated also over 30 non-dimensional time units. However, because of the
averaging over the homogeneous directions, including the time averaging only made the curves
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Figure 9. L2-norms of the SGS term, �, and numerical error, �. The whole
velocity �eld is �ltered. Re�=180.

smoother, and it did not a�ect the conclusions. When explicit �ltering was not applied, the
L2-norms ‖�x‖2 and ‖�x‖2 were of the same magnitude only in the near-wall region. For the
most part, ‖�x‖2 was much larger than ‖�x‖2. As the explicit �lter of the width of two LES
grid spacings (�f =2�LES) was applied, the magnitude of the numerical error diminished.
However, the SGS term �x did not grow as fast as the numerical error �x diminished, and
the numerical error still dominated the SGS term in most part of the channel. The same type
of behaviour has also been noticed in the previous studies [5].
In principle, increasing the �lter width further would lead to a situation where ‖�x‖2 is

smaller than ‖�x‖2. However, on a �xed grid resolution, this situation would not be physically
meaningful and in addition, it would be computationally ine�cient. In Figure 10, we see the
behaviour of ‖�x‖2 from the cases where larger �lter widths were applied. We notice that
when the �lter width was large enough, the growth of the SGS term stopped and it actually
began to diminish. First, only in a small area, but later in the whole channel. This behaviour
is in contradiction with the idea of explicit �ltering. However, it is understood by studying
the energy spectra and the cut-o� wave number. The minimum wavelength that the grid was
able to describe is two times the grid spacing, �. Thus, the maximum wave number scaled
by the channel half-height, �, is

k̂max�=
2�
2�=�

(9)

In the current DNS, the maximum wave numbers in the streamwise and spanwise directions
were k̂

x
max� ≈ 47 and k̂

y
max� ≈ 118, respectively. On the studied LES grid with no explicit

�ltering, these wave numbers were 12 and 30, respectively. When the spectra in Figure 4,
are considered, these cut-o� wave numbers seem to be reasonable. When explicit �ltering is
applied, the e�ective resolution is determined by the �lter width �f . Thus, also the cut-o�
wave number is determined by �f . When the explicit �lter of the width of �f =4�LES =
12�DNS was applied, the cut-o� wave number in the streamwise direction was approximately
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Figure 10. L2-norm of the SGS term using also wider �lters. The
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k̂
x
max� ≈ 3 and in the spanwise direction k̂ymax� ≈ 10. The energy spectra from the area where
the undesired behaviour of the SGS term began (y=h ≈ 0:05, y+ ≈ 36) are also included in
Figure 4. We notice that as the explicit �lter is applied, both the streamwise and spanwise
cut-o� wave numbers are quite low. As the �lter width is increased further, the cut-o� wave
numbers become even smaller. Thus, one reason for the unphysical behaviour of the SGS
term is that the �lter width had become too large and also the large energy-bearing scales
were a�ected by the �lter. Thus, the assumptions made in the derivation of the LES equations
were contradicted.
When the SGS term is considered, there are two alternatives for the interpretation of the

results. First, the obtained SGS term can be seen as the SGS term of a simulation on a
reasonable LES grid applying explicit �ltering. The other possibility is to interpret it as the
SGS term of an LES performed on a grid with spacing equal to the �lter width �f and with no
explicit �ltering. Similar interpretation cannot be done for the numerical error. The resolution
at which the magnitude of the SGS term started to diminish also gives a limit for the minimum
resolution necessary in LES simulation of the channel �ow at this Reynolds number. At a
lower resolution, the grid-�ltered momentum equations would no longer be meaningful. At this
Reynolds number (Re�=180), the behaviour started when the grid spacing was eight times
our DNS grid spacing. Thus, the LES grid would have the nominal resolution of �x+ =144
and �y+ =56. This would be quite a coarse LES grid.
In Figure 11, we see the behaviour of the L2-norms of the SGS term and of the numerical

error from the a priori tests performed at Re�=395. Here, the results were averaged over
the homogeneous directions and 20 non-dimensional time units. As expected, in this case the
magnitude of the SGS term was larger in the near-wall region than at the lower Reynolds
number. However, the numerical error still dominated the SGS term. Explicit �ltering dimin-
ished the numerical error, and in the near-wall region, ‖�x‖2 and ‖�x‖2 were about the same
size. However, our LES grid was quite coarse for explicit �ltering, and thus, the SGS term
did not grow with the �lter width. In Figure 12, we have the L2-norms of the SGS term from
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Figure 11. L2-norms of the SGS term, �, and numerical error, �.
The whole velocity �eld is �ltered. Re�=395.
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Figure 12. L2-norm of the SGS term using also wider �lters. The whole
velocity �eld is �ltered. Re�=395.

tests where also a wider �lter was applied. In this case, the L2-norm of the SGS term started
to diminish already when the �lter width was �f =2�LES =6�DNS. Thus, the LES results
on this grid could not be improved using explicit �ltering because the nominal resolution
becomes too low.
Based on the results of this section, it seems that if one applies explicit �ltering to the

whole velocity �eld, one has to increase the grid resolution. Otherwise, the nominal resolution
becomes too low and the SGS starts to behave in an unphysical manner. However, in LES,
the computational capacity usually sets limits for the grid resolution. Thus, it seems that on a
reasonable LES grid, explicit �ltering of the whole velocity �eld is not a reasonable approach
to reducing the numerical errors.
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4.2. Explicit �ltering of only the non-linear term

Next, we consider the approach to explicit �ltering where the explicit �lter is applied only to
the non-linear convection term. This approach was suggested in Reference [10]. The equations
being solved are written as

@ũi
@t
+
@ũiũj
@xj

= − @p̃
@xi

+
@
@xj

(
1
Re�

(
@ũi
@xj

+
@ũj
@xi

))
− �i (10)

where the overline again refers to the explicit �lter and the tilde to the implicit �lter. The
di�erence to Equation (7) is that the explicit �lter is applied only to the non-linear convec-
tion term, and the other terms are a�ected only by the implicit �lter. The SGS term �i in
Equation (10) is de�ned as

�i=
@ũiuj
@xj

− @ũiũj
@xj

(11)

and the numerical error �i related to the spatial discretization of the SGS term as

�i=
@ũiũj
@xj

− �ũiũj
�xj

(12)

Both de�nitions di�er from Equation (8). We will see that the di�erences in the de�nition
of the SGS term �i are crucial. For discussion on how this modi�ed �i can be modelled in
actual LES see e.g. Reference [9].
Explicit �ltering of only the non-linear term was tested using the same methods as discussed

in the previous section. The essential di�erence was that the explicit �lter was applied only
to the product of velocity components and not to the individual velocity components.
In Figures 13 and 14, we depict the L2-norms of �x and �x from the case at Re�=180 and in

Figures 15 and 16 from Re�=395 case. We notice that this �ltering approach had indeed the
desired e�ect on both numerical error and SGS term. The numerical error rapidly diminished
and, in addition, the magnitude of the SGS term grew fast with the �lter width. The SGS
term was everywhere clearly larger than the numerical error. The undesired diminishing of
the SGS term as the �lter width grows was not noticed in this approach.

4.3. Di�erence between the two approaches

In this section, we further discuss some of the di�erences between the two applied
approaches to explicit �ltering. Firstly, we discuss the sum of the numerical error and the
SGS term and secondly, the two de�nitions of the SGS term.
The sum of the SGS term and the numerical error can be interpreted as the di�erence

between a su�ciently resolved and coarse-grid DNS solutions, i.e. an LES without an SGS
model. For the case, where the whole velocity �eld is �ltered, the sum is written as

�i + �i=
@ũiuj
@xj

− @ũi ũj
@xj

+
@ũi ũj
@xj

− �ũi ũj
�xj

=
@ũiuj
@xj

− �ũi ũj
�xj

(13)
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Figure 13. L2-norm of the SGS term, �, using explicit �lters of widths 2 and 4 LES grid
spacings. Only the non-linear term is �ltered. Re�=180.
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Figure 14. L2-norm of numerical error, �, using explicit �lters of widths 2 and 4 LES grid
spacings. Only the non-linear term is �ltered. Re�=180.

If only the non-linear term is �ltered explicitly, the sum of �i and �i is written as

�i + �i=
@ũiuj
@xj

− @ũiũj
@xj

+
@ũiũj
@xj

− �ũiũj
�xj

=
@ũiuj
@xj

− �ũiũj
�xj

(14)

This sum for both approaches at Reynolds number Re�=180 is plotted in Figures 17 and 18.
We notice that in the �rst approach, the di�erence between the su�ciently resolved and
the coarse-gird DNS diminished when explicit �ltering was applied. This suggests, somehow
misleadingly, that the results of a coarse-grid DNS could be improved simply by applying
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Figure 15. L2-norm of the SGS term, �, using explicit �lters of widths 2 and 4 LES grid
spacings. Only the non-linear term is �ltered. Re�=395.
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Figure 16. L2-norms of numerical error, �, using explicit �lters of widths 2 and 4 LES grid
spacings. Only the non-linear term is �ltered. Re�=395.

an explicit �lter to the whole velocity �eld. In this case, the numerical error was e�ectively
diminished, which led to the decreased di�erence between the su�ciently resolved and the
coarse-grid DNS. Applying an SGS model could not improve these coarse-grid results, since
the e�ect of the SGS term also diminished. Figure 17 thus demonstrates the fact that when
the whole velocity �eld is �ltered, some information is lost, and we cannot recover it by
modelling. Figure 18 is from the case where only the non-linear term was �ltered. In this
case, the behaviour of the di�erence was the opposite. Increasing the �lter width increased the
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Figure 17. L2-norm of the sum of the SGS term, �, and numerical error, �.
The whole velocity �eld is �ltered. Re�=180.
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Figure 18. L2-norm of the sum of the SGS term, �, and numerical error, �.
Only the non-linear term is �ltered. Re�=180.

di�erence between the su�ciently resolved and the coarse-grid DNS results. This indicates
that at the same time as the numerical error decreased, the scales �ltered out have been
shifted to the SGS term, and using an SGS model could improve the results. This supports
the conclusion that the latter method may lead to improved LES results.
Depending on whether the explicit �lter was applied to the whole velocity �eld or only to

the non-linear term, the behaviour of the SGS term �i was clearly di�erent. We next consider
more carefully the origin of this di�erence. We label the SGS term of the �rst approach where
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Figure 19. The di�erence between the de�nitions �1 and �2 for the SGS term.
The di�erence in the resolved non-linear term. Re�=180.

the whole velocity �eld is �ltered explicitly with the superscript 1

�1i =
@ũiuj
@xj

− @ũi ũj
@xj

(15)

and the SGS term of the second approach where explicit �ltering is applied only to the
non-linear term with the superscript 2

�2i =
@ũiuj
@xj

− @ũiũj
@xj

(16)

In both de�nitions for the SGS term �i, tilde refers to the grid �lter and overline to the
explicit �lter. The �rst term of �i represents the non-linear term that appears in the �ltered
Navier–Stokes equations. The second term represents the quantity that is evaluated using only
the resolved �eld. There are di�erences between the two de�nitions in both of these terms,
and �2i and �

1
i are related to each other via the equation

�2i = �
1
i +

@ũiuj
@xj

− @ũiuj
@xj︸ ︷︷ ︸

=DIFF1

+
@ũi ũj
@xj

− @ũiũj
@xj︸ ︷︷ ︸

=DIFF2

(17)

The di�erence between �1i and �
2
i consists of two parts: the di�erence in the resolved non-

linear term in the �ltered Navier–Stokes equations (DIFF1) and the quantity being evaluated
from the resolved �eld (DIFF2). DIFF1 represents the sub-�lter part of @ũiuj=@xj, and DIFF2
is the divergence of the sub-�lter-scale stress or Leonard stress. The L2-norms of these two
terms are depicted in Figures 19 and 20 with varying explicit �lter widths. Both of these
terms increased with increasing �lter width, but the di�erence in the resolved non-linear term
(DIFF1) formed the major part of the di�erence between the two de�nitions of �i. It seems
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Figure 20. The di�erence between the de�nitions �1 and �2 for the SGS term. The di�erence
in the term evaluated from the resolved �eld. Re�=180.

that, in the behaviour of the SGS term, the crucial point is the interpretation of the non-linear
term of the �ltered Navier–Stokes equations.

4.4. Three-dimensional �ltering

In the a priori tests discussed in the previous sections, �ltering was applied only in the
homogeneous directions, and the wall-normal resolution of the LES grid was the same as the
resolution of the DNS grid. In this section, we discuss a priori tests in which �ltering was
applied also in the wall-normal direction, and the resolution in this direction corresponded to
a resolution of a normal LES grid (see Table IV). Both �ltering of the whole velocity �eld
and �ltering of the non-linear term only are studied here at the Reynolds number Re�=180.
Filtering in inhomogeneous directions is an important issue, since in real applications of
LES, homogeneous directions are rather an exception. The aim of these tests is to verify
that the results of the previous sections are not restricted to cases with only homogeneous
directions.
Applying �ltering in the wall-normal direction is not as straightforward as in the homo-

geneous directions, because the grid spacing varies and changing the order of the derivative
and the �lter introduces commutation errors. Commutative �lters have been proposed [11]
and applied in actual simulations [8], and they can also be applied in the a priori tests. The
same symmetrical fourth-order commutative �lter as applied in the homogeneous directions
was used in the wall-normal direction in the middle of the domain. In the near-wall region,
asymmetrical commutative �lters were constructed following the method presented in Refer-
ence [11]. Since these �lters are applied as grid �lters, they should have the e�ective �lter
width of three DNS grid spacings. In addition, they should have as low commutation error
as possible, since the commutation error adds to the error in evaluation of the SGS term �i
and of the numerical error �i on the DNS grid. However, in order to avoid large negative
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Figure 21. Numerical error and SGS term using three-dimensional grid �lter and two-
and three-dimensional explicit �lters. The whole velocity �eld is �ltered explicitly.
�f =2�LES. ‘2D’: three-dimensional grid �lter and two-dimensional explicit �ltering.

‘3D’: both �lters were three dimensional. Re�=180.

and positive values of the �lter function in the near-wall region, the order of the �lter was
reduced in the three points of the DNS grid that were closest to the walls.
The last term of the numerical error �i (Equation (12)) is evaluated on the LES grid, and

also the explicit �ltering is performed there. The trapezoidal �lter has the commutation error
of second order, and since the second-order central-di�erence scheme is applied on the LES
grid, it is a suitable choice also for the three-dimensional �ltering.
Three of the terms of � and � are evaluated on the DNS grid (Equations (8), (11) and (12)).

Thus, the velocity �eld is �ltered, but it is not restricted to the LES grid, and also the explicit
�lter has to be applied on the DNS grid. The explicit �lter applied on the DNS grid has to
have �lter width of six DNS grid spacings. The derivatives on the DNS grid were evaluated
using the fourth-order central-di�erence scheme and the grid �lter was of fourth order. Thus,
we would like to have also a fourth-order explicit �lter. This makes the construction of the
explicit �lter somewhat problematic on the DNS grid. To obtain a �lter transfer function
that has that long �lter width and behaves well, i.e. does not have large negative or positive
values, one has to �x at least four derivatives of the �lter transfer function at the grid cut-o�
frequency. This is why a �lter that is only of second order was applied as the explicit �lter on
the DNS grid. This introduces a commutation error of order �2

DNS to the corresponding terms
of �i and �i. However, the error on the LES grid is of the order �2

LES, and the numerical
error on the DNS grid is still too small to a�ect the conclusions of the a priori tests.
The results from the a priori tests applying three-dimensional �ltering to the whole velocity

�eld are given in Figure 21. Here the L2-norms were evaluated on a single time step. In the
case with label ‘2D’, only the grid �lter was three dimensional and the explicit �lter was two
dimensional, and �nally in case ‘3D’, both grid and explicit �lters were three dimensional.
Applying the three-dimensional explicit �lter reduced further the numerical error. This is nat-
ural, since the LES velocity �eld becomes somewhat smoother due to the �ltering performed
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Figure 22. Numerical error and SGS term. Only the non-linear term is �ltered ex-
plicitly. �f =2�LES. ‘2D’: three-dimensional grid �lter and two-dimensional explicit

�ltering. ‘3D’: both �lters were three dimensional. Re�=180.

in the wall-normal direction. When the three-dimensional explicit �lter was applied, the SGS
term diminished slightly. This is again undesired behaviour, and it is due to the damping of
the large-scale eddies.
The numerical error and the SGS term from the tests where only the non-linear term was

�ltered are depicted in Figure 22. We notice the same behaviour of the numerical error as in
the previous case, while here the SGS term grew when the three-dimensional explicit �lter
was applied. In addition, the SGS term was everywhere much larger than the numerical error.
Thus, also explicit three-dimensional �ltering of only the non-linear term led to the desired
result.
The results presented in this section thus verify that applying �ltering only in homogeneous

directions in a priori tests did not a�ect the overall conclusion of the Sections 4.1–4.3. When
three-dimensional �ltering was applied, �ltering of the whole velocity �eld seemed to lead
to an unphysical situation. The desired behaviour of �ltering only the non-linear term was
further reinforced when the three-dimensional �lter was applied.

5. CONCLUSIONS

This paper concentrated on the role of numerical error in large eddy simulation. The aim was
to clarify how well explicit �ltering is suited to reducing numerical errors in a practical LES,
where low-order �nite-di�erence schemes are applied, and as the explicit �lter is applied, the
grid resolution is not increased.
Two approaches to explicit �ltering were discussed and compared a priori: �ltering of

the whole velocity �eld and �ltering of the non-linear convection term of the Navier–Stokes
equations. When the whole velocity �eld was �ltered while the grid resolution was kept
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constant, �ltering did not increase the SGS term, and �nally when the �lter width was in-
creased further, the SGS term started to diminish. One reason for this unphysical behaviour
is that the large energy-bearing eddies were a�ected by the �lter. This began already when
a �lter width of four grid spacings was applied. This �lter width combined with the second-
order central-di�erence scheme has been previously suggested by some groups [2, 4]. Based
on the results presented in this paper, it seems that to increase the e�ect of the SGS model
using this approach one would have to increase also the grid resolution. Usually, this is not
possible because of the increased computational demands.
When only the non-linear term was �ltered, the desired behaviour was obtained. As the �lter

width was increased, the L2-norm of the numerical error diminished and that of the SGS term
increased. The numerical error was clearly smaller than the SGS term. The increased SGS
term indicates that in an actual simulation, the role of the chosen SGS model is pronounced,
and the responsibility for scales being �ltered out is shifted to the model. Thus, an SGS
model can improve the simulation results. By studying the sum of the numerical error and the
SGS term, it was further demonstrated that while �ltering of the whole velocity �eld leads
to loss of information, sub-�lter-scale motions are e�ectively shifted to the SGS term if the
non-linear convection term in �ltered.
The main di�erence between the two discussed approaches to explicit �ltering is the inter-

pretation of the resolved non-linear term in the �ltered Navier–Stokes equations. In the �rst
approach, where the whole velocity �eld is �ltered, one tries to model the non-linear term
that has been explicitly �ltered. In the second approach, where the explicit �lter has been
applied only to the non-linear terms, one tries to model the grid-�ltered term.
In the previous a priori studies of the channel �ow, �ltering has been applied only in the

homogeneous directions. However, in many applications, there are no homogeneous directions.
In this paper, a priori tests applying �ltering in the wall-normal direction were presented. We
noticed that including this �ltering reinforced the overall conclusion. The unphysical behaviour
of the SGS term in the case, where the whole velocity �eld was �ltered explicitly, remained.
The desired behaviour when only the non-linear term was �ltered was even stronger with the
three-dimensional �ltering. Thus, the conclusions from the tests with �ltering in homogeneous
directions can be extended to cases with inhomogeneous directions. This suggests that explicit
�ltering is an e�ective method for reducing numerical errors also in practical applications with
inhomogeneous directions. In cases where there are homogeneous directions, there is also the
possibility to apply the �ltering only in these directions. Based on the present results, it seems
that �ltering also in inhomogeneous directions further increases the di�erence between the
numerical error and the SGS term. On the other hand, �ltering in inhomogeneous directions
further increases the computational cost, while improved results can be obtained with �ltering
applied only in the homogeneous directions.
Based on these a priori tests, it seems that explicit �ltering of the non-linear term could

be an e�cient way to control the level of numerical errors in LES. In this approach, the
responsibility for the sub-�lter scales is e�ectively shifted to the SGS model, and in simulations
applying explicit �ltering, advanced SGS models are probably required.
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